skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Lancien, G."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We prove that the class of reflexive asymptotic-$$c_{0}$$ Banach spaces is coarsely rigid, meaning that if a Banach space $$X$$ coarsely embeds into a reflexive asymptotic-$$c_{0}$$ space $$Y$$, then $$X$$ is also reflexive and asymptotic-$$c_{0}$$. In order to achieve this result, we provide a purely metric characterization of this class of Banach spaces. This metric characterization takes the form of a concentration inequality for Lipschitz maps on the Hamming graphs, which is rigid under coarse embeddings. Using an example of a quasi-reflexive asymptotic-$$c_{0}$$ space, we show that this concentration inequality is not equivalent to the non-equi-coarse embeddability of the Hamming graphs. 
    more » « less